一道初三数学题,请好心人帮帮忙

如图,有两条公路相交于A处,先计划修建一个油库,要求到两条公路的距离相等,那么该如何选择油库的位置?如果再增加一条公路,与这两条公路都相交(不经过A处),那么如何选择油库的位置才能保证油库到三条公路的距离相等?
在线等答案,请好心人帮帮忙,谢谢!

1、作∠A的角平分线,则角平分线上任意一点(油库)与两边(公路)距离相等。
∵距离为直线的垂足到点的长度。
∴连接油库和公路的距离,所成的两个直角三角形全等,三个角相等,一条边共用。
2、第三条公路与已知两条公路相交成一个三角形,作三角形任意两个角的角平分线,交点(油库)与三条边(公路)的距离相等。
∵同上,连接交点与三边的距离。则可证每两个直角三角形全等。
∴交点(油库)与三条边(公路)距离相等。
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-08-29
角A的平分线上的点到 这两条路的距离相等。如果再有一条,那么就再找那个角的角平分线就,两个角平分线的交点即为所求。
相似回答