求微分方程y''+(2/1-y)*(y')^2=0的通解

如题所述

令p=y'
则y"=pdp/dy
代入方程: pdp/dy+2/(1-y)*p^2=0
dp/p=2dy/(y-1)
积分: ln|p|=2ln|y-1|+C
得:p=C1(y-1)^2
dy/(y-1)^2=C1dx
积分;-1/(y-1)=C1x+C2
故y=1-1/(C1x+C2)
温馨提示:内容为网友见解,仅供参考
无其他回答
相似回答