第1个回答 推荐于2017-09-26
1、已知一件衬衫的价格为80元,一份肯德鸡快餐的价格为20元,在某消费者关于这两种商品的效用最大化的均衡点上,一份肯德鸡快餐对衬衫的边际替代率MRS是多少?
解:按照两商品的边际替代率MRS的定义公式,可以将一份肯德鸡快餐对衬衫的边际替代率写成:
其中:X表示肯德鸡快餐的份数;Y表示衬衫的件数; MRS表示在维持效用水平不变的前提下, 消费者增加一份肯德鸡快餐时所需要放弃的衬衫消费数量。
在该消费者实现关于这两件商品的效用最大化时,在均衡点上有
MRSxy =Px/Py
即有MRSxy =20/80=0.25
它表明:在效用最大化的均衡点上,消费者关于一份肯德鸡快餐对衬衫的边际替代率MRS为0.25。
2 假设某消费者的均衡如图1-9所示。其中,横轴和纵轴,分别表示商品1和商品2的数量,线段AB为消费者的预算线,曲线U为消费者的无差异曲线,E点为效用最大化的均衡点。已知商品1的价格P1=2元。
(1)求消费者的收入;
(2)求上品的价格;
(3)写出预算线的方程;
(4)求预算线的斜率;
(5)求E点的的值。
解:(1)图中的横截距表示消费者的收入全部购买商品1的数量为30单位,且已知P1=2元,所以,消费者的收入M=2元×30=60。
(2)图中的纵截距表示消费者的收入全部购买商品2的数量为20单位,且由(1)已知收入M=60元,所以,商品2的价格P2斜率=-P1/P2=-2/3,得P2=M/20=3元
(3)由于预算线的一般形式为:
P1X1+P2X2=M
所以,由(1)、(2)可将预算线方程具体写为2X1+3X2=60。
(4)将(3)中的预算线方程进一步整理为X2=-2/3 X1+20。很清楚,预算线的斜率为-2/3。
(5)在消费者效用最大化的均衡点E上,有MRS12= = MRS12=P1/P2,即无差异曲线的斜率的绝对值即MRS等于预算线的斜率绝对值P1/P2。因此,在MRS12=P1/P2 = 2/3。
3 请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲线,同时请对(2)和(3)分别写出消费者B和消费者C的效用函数。
(1)消费者A喜欢喝咖啡,但对喝热茶无所谓。他总是喜欢有更多杯的咖啡,而从不在意有多少杯的热茶。
(2)消费者B喜欢一杯咖啡和一杯热茶一起喝,他从来不喜欢单独只喝咖啡,或者只不喝热茶。
(3)消费者C认为,在任何情况下,1杯咖啡和2杯热茶是无差异的。
(4)消费者D喜欢喝热茶,但厌恶喝咖啡。
解答:(1)根据题意,对消费者A而言,热茶是中性商品,因此,热茶的消费数量不会影响消费者A的效用水平。消费者A的无差异曲线见图
(2)根据题意,对消费者B而言,咖啡和热茶是完全互补品,其效用函数是U=min{ X1、X2}。消费者B的无差异曲线见图
(3)根据题意,对消费者C而言,咖啡和热茶是完全替代品,其效用函数是U=2 X1+ X2。消费者C的无差异曲线见图
(4)根据题意,对消费者D而言,咖啡是厌恶品。消费者D的无差异曲线见图
4已知某消费者每年用于商品1和的商品2的收入为540元,两商品的价格分别为=20元和=30元,该消费者的效用函数为,该消费者每年购买这两种商品的数量应各是多少?从中获得的总效用是多少?
解:根据消费者的效用最大化的均衡条件:
MU1/MU2=P1/P2
其中,由可得:
MU1=dTU/dX1 =3X22
MU2=dTU/dX2 =6X1X2
于是,有:
3X22/6X1X2 = 20/30 (1)
整理得
将(1)式代入预算约束条件20X1+30X2=540,得:
X1=9,X2=12
因此,该消费者每年购买这两种商品的数量应该为:U=3X1X22=3888
5、假设某商品市场上只有A、B两个消费者,他们的需求函数各自为和。
(1)列出这两个消费者的需求表和市场需求表;
根据(1),画出这两个消费者的需求曲线和市场需求曲线。
解:(1)A消费者的需求表为:
P
0
1
2
3
4
5
QAd
20
16
12
8
4
0
B消费者的需求表为:
P
0
1
2
3
4
5
6
QBd
30
25
20
15
10
5
0
市场的需求表为:
P
0
1
2
3
4
5
6
Qd
50
41
32
23
14
5
0
(2)A消费者的需求曲线为:
B消费者的需求曲线为:
市场的需求曲线为
6、假定某消费者的效用函数为,两商品的价格分别为,,消费者的收入为M。分别求出该消费者关于商品1和商品2的需求函数。
解答:根据消费者效用最大化的均衡条件:
MU1/MU2=P1/P2
其中,由以知的效用函数 可得:
于是,有:
整理得
即有 (1)
一(1)式代入约束条件P1X1+P2X2=M,有:
解得
代入(1)式得
所以,该消费者关于两商品的需求函数为
7、令某消费者的收入为M,两商品的价格为,。假定该消费者的无差异曲线是线性的,切斜率为-a。
求:该消费者的最优商品组合。
解:由于无差异曲线是一条直线,所以该消费者的最优消费选择有三种情况,其中的第一、第二种情况属于边角解。
第一种情况:当MRS12>P1/P2时,即a> P1/P2时,如图,效用最大的均衡点E的位置发生在横轴,它表示此时的最优解是一个边角解,即 X1=M/P1,X2=0。也就是说,消费者将全部的收入都购买商品1,并由此达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。
第二种情况:当MRS12<P1/P2时,a< P1/P2时,如图,效用最大的均衡点E的位置发生在纵轴,它表示此时的最优解是一个边角解,即 X2=M/P2,X1=0。也就是说,消费者将全部的收入都购买商品2,并由此达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。
第三种情况:当MRS12=P1/P2时,a= P1/P2时,如图,无差异曲线与预算线重叠,效用最大化达到均衡点可以是预算线上的任何一点的商品组合,即最优解为X1≥0,X2≥0,且满足P1X1+P2X2=M。此时所达到的最大效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一条无差异曲线所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。
8、假定某消费者的效用函数为,其中,q为某商品的消费量,M为收入。求:
(1)该消费者的需求函数;
(2)该消费者的反需求函数;
(3)当,q=4时的消费者剩余。
解:(1)由题意可得,商品的边际效用为:
于是,根据消费者均衡条件MU/P =,有:
整理得需求函数为q=1/36p
(2)由需求函数q=1/36p,可得反需求函数为:
(3)由反需求函数,可得消费者剩余为:
以p=1/12,q=4代入上式,则有消费者剩余:
Cs=1/3
9设某消费者的效用函数为柯布-道格拉斯类型的,即,商品x和商品y的价格格分别为p和,消费者的收入为M,
(1)求该消费者关于商品x和品y的需求函数。
(2)证明当商品x和 y的价格以及消费者的收入同时变动一个比例时,消费者对两种商品的需求关系维持不变。
(3)证明消费者效用函数中的参数分别为商品x和商品y的消费支出占消费者收入的份额。
解答:(1)由消费者的效用函数,算得:
消费者的预算约束方程为 (1)
根据消费者效用最大化的均衡条件
(2)
得 (3)
解方程组(3),可得
(4)
(5)
式(4)即为消费者关于商品x和商品y的需求函数。
上述休需求函数的图形如图
(2)商品x和商品y的价格以及消费者的收入同时变动一个比例,相当于消费者的预算线变为
(6)
其中为一个非零常数。
此时消费者效用最大化的均衡条件变为
(7)
由于,故方程组(7)化为
(8)
显然,方程组(8)就是方程组(3),故其解就是式(4)和式(5)。
这表明,消费者在这种情况下对两商品的需求关系维持不变。
(3)由消费者的需求函数(4)和(5),可得
(9)
(10)
关系(9)的右边正是商品x的消费支出占消费者收入的份额。关系(10)的右边正是商品y的消费支出占消费者收入的份额。故结论被证实。
10基数效用者是求如何推导需求曲线的?
(1)基数效用论者认为,商品得需求价格取决于商品得边际效用.某一单位得某种商品的边际效用越小,消费者愿意支付的价格就越低.由于边际效用递减规律,随着消费量的增加,消费者为购买这种商品所愿意支付得最高价格即需求价格就会越来越低.将每一消费量及其相对价格在图上绘出来,就得到了消费曲线.且因为商品需求量与商品价格成反方向变动,消费曲线是右下方倾斜的.
(2)在只考虑一种商品的前提下,消费者实现效用最大化的均衡条件:MU /P=。由此均衡条件出发,可以计算出需求价格,并推导与理解(1)中的消费者的向右下方倾斜的需求曲线。
11用图说明序数效用论者对消费者均衡条件的分析,以及在此基础上对需求曲线的推导。
解:消费者均衡条件:
可达到的最高无
差异曲线
和预算线相切,
即MRS12=P1/P2
需求曲线推导:从图上看出,在每一个均衡点上,都存在着价格与需求量之间一一对应关系,分别绘在图上,就是需求曲线X1=f (P1)
12用图分析正常物品、低档物品和吉芬物品的替代效应和收入效应,并进一步说明这三类物品的需求曲线的特征。
解:要点如下:
(1)当一种商品的价格发生变化时所引起的该商品需求量的变化可以分解为两个部分,它们分别是替代效应和收入效应。替代效应是指仅考虑商品相对价格变化所导致的该商品需求量的变化,而不考虑实际收入水平(即效用水平)变化对需求量的影响。收入效用则相反,它仅考虑实际收入水平(即效用水平)变化导致的该商品需求量的变化,而不考虑相对价格变化对需求量的影响。
(2)无论是分析正常品,还是抵挡品,甚至吉分品的替代效应和收入效应,需要运用的一个重要分析工具就是补偿预算线。在图1-15中,以正常品的情况为例加以说明。图中,初始的消费者效用最的化的均衡点为a点,相应的正常品(即商品1)的需求为。价格下降以后的效用最大化的均衡点为b点,相应的需求量为。即下降的总效应为,且为增加量,故有总效应与价格成反方向变化。
然后,作一条平行于预算线且与原有的无差异曲线 相切的补偿预算线FG(以虚线表示),相应的效用最大化的均衡点为c点,而且注意,此时b点的位置一定处于c点的右边。于是,根据(1)中的阐诉,则可以得到:由给定的代表原有效用水平的无差异曲线与代表变化前.后的不同相对价格的(即斜率不同)预算线AB.FC分别相切的a、c两点,表示的是替代效应,即替代效应为且为增加量,故有替代效应与价格成反方向的变化;由代表不同的效用水平的无差异曲线 和 分别与两条代表相同价格的(即斜率相同的)预算线FG. 相切的c、b两点,表示
的是收入效应,即收入效应为且为增加量,故有收入效应与价格成反方向的变化。
最后,由于正常品的替代效应和收入效应都分别与价格成反方向变化,所以,正常品的总效应与价格一定成反方向变化,由此可知,正常品的需求曲线向右下方倾斜的。
(3)关于劣等品和吉分品。在此略去关于这两类商品的具体的图示分析。需要指出的要点是:这两类商品的替代效应都与价格成反方向变化,而收入效应都与价格成同一方向变化,其中,大多数的劣等品的替代效应大于收入效应,而劣等品中的特殊商品吉分品的收入效应大于替代效应。于是,大多数劣等品的总效应与价格成反方向的变化,相应的需求曲线向右下方倾斜,劣等品中少数的特殊商品即吉分品的总效应与价格成同方向的变化,相应的需求曲线向右上方倾斜。
(4)基于(3)的分析,所以,在读者自己利用与图1-15相类似的图形来分析劣等品和吉分品的替代效应和收入效应时,在一般的劣等品的情况下,一定要使b点落在a、c两点之间,而在吉分品的情况下,则一定要使b点落在a点的左边。唯由此图,才能符合(3)中理论分析的要求。
第四章
1.(1)利用短期生产的总产量(TP)、平均产量(AP)和边际产量(MP)之间的关系,可以完成对该表的填空,其结果如下表:
可变要素的数量
可变要素的总产量
可变要素平均产量
可变要素的边际产量
1
2
2
2
2
12
6
10
3
24
8
12
4
48
12
24
5
60
12
12
6
66
11
6
7
70
10
4
8
70
35/4
0
9
63
7
-7
(2)所谓边际报酬递减是指短期生产中一种可变要素的边际产量在达到最高点以后开始逐步下降的这样一种普遍的生产现象。本题的生产函数表现出边际报酬递减的现象,具体地说,由表可见,当可变要素的投入量由第4单位增加到第5单位时,该要素的边际产量由原来的24下降为12。
2.
(1).过TPL曲线任何一点的切线的斜率就是相应的MPL的值。
(2)连接TPL曲线上热和一点和坐标原点的线段的斜率,就是相应的APL的值。
(3)当MPL>APL时,APL曲线是上升的。
当MPL<APL时,APL曲线是下降的。
当MPL=APL时,APL曲线达到极大值。
3.解答:
(1)由生产数Q=2KL-0.5L2-0.5K2,且K=10,可得短期生产函数为:
Q=20L-0.5L2-0.5*102
=20L-0.5L2-50
于是,根据总产量、平均产量和边际产量的定义,有以下函数:
劳动的总产量函数TPL=20L-0.5L2-50
劳动的平均产量函数APL=20-0.5L-50/L
劳动的边际产量函数MPL=20-L
(2)关于总产量的最大值:
20-L=0
解得L=20
所以,劳动投入量为20时,总产量达到极大值。
关于平均产量的最大值:
-0.5+50L-2=0
L=10(负值舍去)
所以,劳动投入量为10时,平均产量达到极大值。
关于边际产量的最大值:
由劳动的边际产量函数MPL=20-L可知,边际产量曲线是一条斜率为负的直线。考虑到劳动投入量总是非负的,所以,L=0时,劳动的边际产量达到极大值。
(3)当劳动的平均产量达到最大值时,一定有APL=MPL。由(2)可知,当劳动为10时,劳动的平均产量APL达最大值,及相应的最大值为:
APL的最大值=10
MPL=20-10=10
很显然APL=MPL=10
4.解答:
(1)生产函数表示该函数是一个固定投入比例的生产函数,所以,厂商进行生产时,Q=2L=3K.相应的有L=18,K=12
(2)由Q=2L=3K,且Q=480,可得:
L=240,K=160
又因为PL=2,PK=5,所以
C=2*240+5*160=1280
即最小成本。
5、
(1)思路:先求出劳动的边际产量与要素的边际产量
根据最优要素组合的均衡条件,整理即可得。
(a) K=(2PL/PK)L
(b) K=( PL/PK)1/2*L
(c) K=(PL/2PK)L
(d) K=3L
(2)思路:把PL=1,PK=1,Q=1000,代人扩展线方程与生产函数即可求出
(a)L=200*4-1/3 K=400*4-1/3
(b) L=2000 K=2000
(c) L=10*21/3 K=5*21/3
(d) L=1000/3 K=1000
6.(1).Q=AL1/3K1/3
F( λl,λk )=A(λl)1/3(λK)1/3=λAL1/3K1/3=λf(L,K)
所以,此生产函数属于规模报酬不变的生产函数。
(2)假定在短期生产中,资本投入量不变,以表示;而劳动
投入量可变,以L表示。
对于生产函数Q=AL1/3K1/3,有:
MPL=1/3AL-2/3K1/3,且d MPL/dL=-2/9 AL-5/3 -2/3<0
这表明:在短期资本投入量不变的前提下,随着一种可变要素劳动投入量的增加,劳动的边际产量是递减的。
相类似的,在短期劳动投入量不变的前提下,随着一种可变要素资本投入量的增加,资本的边际产量是递减的。
7、(1)当α0=0时,该生产函数表现为规模保持不变的特征
(2)基本思路:
在规模保持不变,即α0=0,生产函数可以把α0省去。
求出相应的边际产量
再对相应的边际产量求导,一阶导数为负。即可证明边际产量都是递减的。
8.(1).由题意可知,C=2L+K,
Q=L2/3K1/3
为了实现最大产量:MPL/MPK=W/r=2.
当C=3000时,得.L=K=1000.
Q=1000.
(2).同理可得。800=L2/3K1/3.2K/L=2
L=K=800
C=2400
9利用图说明厂商在既定成本条件下是如何实现最大产量的最优要素组合的。
解答:以下图为例,要点如下:
分析三条等产量线,Q1、Q2、Q3与等成本线AB之间的关系.等产量线Q3虽然高于等产量线Q2。但惟一的等成本线AB与等产量线Q3既无交点又无切点。这表明等产量曲线Q3所代表的产量是企业在既定成本下无法实现的产量。再看Q1虽然它与惟一的等成本线相交与a、b两点,但等产量曲线Q1所代表的产量是比较低的。所以只需由a点出发向右或由b点出发向左沿着既定的等成本线 AB改变要素组合,就可以增加产量。因此只有在惟一的等成本线AB和等产量曲线Q2的相切点E,才是实现既定成本下的最大产量的要素组合。
10、利用图说明厂商在既定产量条件下是如何实现最小成本的最优要素组合的。
解答:如图所示,要点如下:
(1)由于本题的约束条件是既定的产量,所以,在图中,只有一条等产量曲线;此外,有三条等成本线以供分析,并从中找出相应的最小成本。
(2)在约束条件即等产量曲线给定的条件下, A”B”虽然代表的成本较低,但它与既定的产量曲线Q既无交点又无切点,它无法实现等产量曲线Q所代表的产量,等成本曲线AB虽然与既定的产量曲线Q相交与a、b两点,但它代表的成本过高,通过沿着等产量曲线Q由a点向E点或由b点向E点移动,都可以获得相同的产量而使成本下降。所以只有在切点 E,才是在既定产量条件下实现最小成本的要素组合。由此可得,厂商实现既定产量条件下成本最小化的均衡条件是MRL/w=MPK/r。本回答被提问者采纳