求一个积分问题。 f(x)在[0,+∞)单调减少,非负,连续,为什么∫ f(x)dx

求一个积分问题。
f(x)在[0,+∞)单调减少,非负,连续,为什么∫ f(x)dx ≥ ∫ f(n+1)dx (其中上限都是n+1.下限是n,n为正整数)。∫ f(x) dx ≤ ∫ f(n-1)dx(其中上限是n,下限是n-1,n为正整数)。

根据积分中值定理,存在k和m,满足n<=k<=n+1,n-1<=m<=n,使得
∫(n,n+1) f(x)dx=(n+1-n)*f(k)=f(k)
∫(n-1,n) f(x)dx=(n-n+1)*f(m)=f(m)
因为f(x)在x>=0上单调递减,所以f(n+1)<=f(k)<=f(n)<=f(m)<=f(n-1)
所以∫(n,n+1) f(x)dx=f(k)>=f(n+1)=∫(n,n+1) f(n+1)dx
∫(n-1,n) f(x)dx=f(m)<=f(n-1)=∫(n-1,n) f(n-1)dx
温馨提示:内容为网友见解,仅供参考
无其他回答
相似回答