1/(1*3)+1/(3*5)+1/(5*7)+…+1/(99*101)
解:
因为1/(1*3)=1/2*(1/1-1/3)
1/(3*5)=1/2*(1/3-1/5)
1/(5*7)=1/2*(1/5-1/7)
……
1/(99*101)=1/2*(1/99-1/101)
所以:
1/(1*3)+1/(3*5)+1/(5*7)+…+1/(99*101)
=1/2*(1/1-1/3)+1/2*(1/3-1/5)+1/2*(1/5-1/7)+…+1/2*(1/99-1/101)
=1/2*[(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+…+(1/99-1/101)]
=1/2*(1/1-1/3+1/3-1/5+1/5-1/7+…+1/99-1/101)
=1/2*(1/1-1/101)
=1/2*(100/101)
=50/101
温馨提示:内容为网友见解,仅供参考