1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+n)

如题所述

分母用等差求和公式,再把分母分解因式,再用分数求和的裂项公式:
1/n(n+1)=1/n-1/(n+1)
就可以了。
答案是2n/(1+n)

可怕的是现在小学的奥数题就有这个了,我前几天才给妹妹讲了的
温馨提示:内容为网友见解,仅供参考
第1个回答  2006-02-12
1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+n)
=1/1*2/2+1/2*3/2+....+1/n(n+1)/2
=2/1*2+2/2*3+......+2/n(n+1)
=2[1-1/2+1/2-1/3+.....+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
第2个回答  2006-02-12
因为 1+2+3+…+n=(n+1)n/2

所以 1/(1+2+3+…+n) =2/[(n+1)n] =2[1/n-1/(n+1)]

那么1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+n)=2[1-1/(n+1)] =2n/(n+1)
第3个回答  2006-02-12
1+2+3+…+n=(n+1)n/2
1/(1+2+3+…+n)
=2/[(n+1)n]
=2[1/n-1/(n+1)]
1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+n)
=2[1-1/(n+1)]
=2n/(n+1)
第4个回答  2006-02-12
1+2+3+…+n=(n+1)n/2
1/(1+2+3+…+n)
=2/[(n+1)n]
=2[1/n-1/(n+1)]
1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+n)
=2[1-1/(n+1)]
=2n/(n+1)

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…+n)
1\/n(n+1)=1\/n-1\/(n+1)就可以了。答案是2n\/(1+n)可怕的是现在小学的奥数题就有这个了,我前几天才给妹妹讲了的

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…+n)这个怎么计算啊
所以Sn=1+[1\/(1+2)]+〔1\/(1+2+3)〕+[1\/(1+2+3+4)]+……+[1\/(1+2+3+……+n)]=2[1\/1-1\/2]+2[1\/2-1\/3]+2[1\/3-1\/4]+...+2[1\/n-1\/(n+1)]=2[1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/(n-1)-1\/n+1\/n-1\/(n+1)]=2[1-1\/(n+1)]=2n\/(n+1...

1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)等于几?
所以1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)=1+2*[(1\/2-1\/3)+(1\/3-1\/4)+……+(1\/100-1\/101)]=1+2*(1\/2-1\/101)=2-2\/101 =200\/101

数学计算。1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3+……+1...
所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...2003)=2(1\/1 - 1\/2)+2(1\/2 -1\/3) +2(1\/3-1\/4)+...+2(1\/2003-1\/2004)=2-2\/2004 =2-1\/1002 =2003\/1002

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+50)=小学解法
所以,1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+50)= 2×(1 - 1\/2) + 2×(1\/2 - 1\/3) + 2×(1\/3 - 1\/4) + 2×(1\/4 - 1\/5) + …… + 2×(1\/50 - 1\/51)= 2×(1 - 1\/2 + 1\/2 - 1\/3 + 1\/3 - 1\/4 + 1\/4 - 1\/5 + …… +...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...99+100)
注意观察,第 N 个加式可以表述成:1\/(1 + 2 + 3 + ... + n)= 1\/[n(n + 1)\/2]= 2\/[n(n + 1)]= 2[1\/n - 1\/(n + 1)]那么有:1\/1 + 1\/(1 + 2) + 1\/(1 + 2 + 3) + ... + 1\/(1 + 2 + 3 + ... + 100)= 1 + 2\/(2*3) + 2\/(3*4) ...

用C语言编写程序,求1+1\/(1+2)+1\/(1+2+3)+... +1\/(1+2+...+n),并将...
include<stdio.h> int main(){ int n,j;float sum=0,s=0;printf("请输入n的值:");scanf("%d",&n);for(j=1;j<=n;j++){ sum=sum+j;s=s+1\/sum;} printf("%g",s);return 0;} 需注意詹俊峰给的是典型的错误答案,请楼主思考为什么。

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
第二种:因为:1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*...

数学问题 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+L+100)的...
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 性质 若已知一个...

计算巧算1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……1\/(1+2+3+……+100...
1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(...

相似回答
大家正在搜